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Abstract: β-secretase (BACE1) has been regarded as a prime target for the development of amyloid 
beta (Aβ) lowering drugs in the therapy of Alzheimer´s disease (AD). Although the enzyme was 
discovered in 1991 and helped to formulate the Aβ hypothesis as one of the very important features 
of AD etiopathogenesis, progress in AD treatment utilizing BACE1 inhibitors has remained limited. 
Moreover, in the last years, major pharmaceutical companies have discontinued clinical trials of 
five BACE1 inhibitors that had been strongly perceived as prospective. In our review, the Aβ hy-
pothesis, the enzyme, its functions, and selected substrates are described. BACE1 inhibitors are 
classified into four generations. Those that underwent clinical trials displayed adverse effects, in-
cluding weight loss, skin rashes, worsening of neuropsychiatric symptoms, etc. Some inhibitors 
could not establish a statistically significant risk-benefit ratio, or even scored worse than placebo. 
We still believe that drugs targeting BACE1 may still hide some potential, but a different approach 
to BACE1 inhibition or a shift of focus to modulation of its trafficking and/or post-translational 
modification should now be followed. 
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1. INTRODUCTION 

 Alzheimer’s disease (AD) is characterized by the pro-
gressive decline of cognitive functions, manifested in ab-
normalities of speech, social behavior, and memory. The 
disease is fatal, with maximal survival of 10 years following 
the diagnosis. The symptoms of AD may result from the 
formation of insoluble amyloid plaques in the brain, which 
consists of extracellular deposits of insoluble amyloid-β (Aβ) 
[1-3]. Aβ was first isolated and described in 1987 [4, 5]. Aβ 
is derived from an amyloid precursor protein (APP), which is 
a type I transmembrane protein with a large extracellular 
domain and a short cytoplasmic region. Several different 
APP isoforms exist as a result of alternative splicing, ranging 
in length from 695 to 770 amino acid residues [6]. APP is 
produced in large amounts in neurons. However, it is typi-
cally very quickly metabolized. Norstrom listed six different 
enzymes able to cleave APP, including α-, β-, δ-, η- and θ-
secretase and meprin β [7]. In AD, APP is cleaved alterna-
tively through the sequential action of integral membrane ß- 
and γ-secretase in endosomal compartments, releasing Aβ 
from the APP [8, 9]. In the initial cleavage, ß-secretase  
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(BACE1) splits APP and produces a ~100 kDa soluble N-
terminal APP ectodomain (APPsβ) and a 12 kDa membrane-
tethered C-terminal fragment with 99 or 89 amino acid resi-
dues (C99/C89), according to whether it cleaves at Asp1 or 
Glu11 of the APP. Under physiological conditions, BACE1 
predominantly cleaves APP at the Glu11 site and the result is 
the non-amyloidogenic form C89, which results in truncated 
Aβ production (Fig. 1). 

 Zhang and his colleague demonstrated that the APP 
Swedish mutation strongly shifted the BACE1 primary 
cleavage site from Glu11 to Asp1, resulting in a higher 
C99/C89 ratio. This well-known double mutation was first 
identified in a Swedish family and results in a substitution of 
two amino acids, Lys595 to Asn595and Met596 to Leu596. The 
replacements are responsible for three to six times higher 
production of Aβ [10-15]. The C99 or C89 fragment is sub-
sequently processed by γ-secretase. The γ-secretase is a 
complex which consists of four components - presenilins 
(PS1 and PS2), presenilin enhancer 2 (PEN-2), anterior 
pharynx-defective 1 (APH-1), and nicastrin. It cleaves C99 
in the transmembrane region, liberating APP intracellular 
domain (AICD) and Aβ peptide [16-18]. Various isoforms of 
Aβ fragments, ranging in size from 37 to 49 residues, are 
caused by γ-secretase cleavage of C99 at multiple sites and 
by further processing of the fragments. The amyloid fibrils in 
AD predominantly consist of 40 and 42 amino acids 
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(Aβ140/Aβ142) that exhibit aggregative ability and neurotox-
icity. The Aβ42 plays a key role in the pathogenesis of AD as 
its aggregative ability and neurotoxicity are substantially 
higher than in Aβ40 [19, 20]. Genetic variations in the APP 
amino acid sequence in the proximity of the BACE1 cleav-
age site may affect the activity of the enzyme. Studies of 
APP have identified 24 mutations and duplications in nine 
families of various ethnic origins (French, Dutch, Japanese, 
and Swedish) that significantly contribute to the pathogene-
sis of AD. In contrast, a rare A673T variant seems to protect 
against the development of the disease. BACE1 cleaves 50-
fold less for such threonine substitution than for alanine in 
the same position. Thus, understanding of APP processing 
appears fundamental for the development of a therapeutic 
strategy aimed at reducing Aβ levels in AD patients [21-25]. 

2. BACE 
 Beta-secretase was discovered independently by five 
research teams in 1991. All of them simultaneously reported 
a new integral membrane aspartyl protease. These findings 
initiated a large number of studies focused on this enzyme 
[26-30]. Beta-secretase exists in two major forms, BACE1 

containing 501 amino acids (EC 3.4.23.46) and BACE2 con-
taining 518 amino acids (EC 3.4.23.45). Both forms show 
approximately 75% sequence homology. BACE1 is known 
to cleave APP, and mature BACE1 is found on the cell sur-
face and in endosomes, but not in the endoplasmic reticulum 
(ER) or lysosomes. There is still some lack of clarity regard-
ing the major subcellular compartment where APP is cleft by 
BACE1, leading to Aβ production. On the other hand, the 
role of its homolog BACE2 is still unidentified. The results 
of biochemical and morphological analyses confirmed a 
physiological role, such as the regulation of glucose homeo-
stasis, as well as the amyloidogenic role of BACE2 in pig-
ment cells [31]. The BACE1 gene includes a ~30 kilobase (kb) 
region within human chromosome band 11q23.2 – 11q23.3 
and consists of 9 exons and 8 introns. The gene encoding 
BACE2 has been located on the long arm of chromosome 21 
at 21q22.3. Trisomy of chromosome 21 is associated with 
Down syndrome (DS). As adults with DS age, they are at high 
risk for AD and virtually all of them have sufficient senile 
plaques and neurofibrillary tangles for neuropathological 
diagnosis of AD by the age of 40. Adults with Down’s syn-
drome who were also diagnosed for AD-type dementia dis-

 
Fig. (1). Proteolytic processing of APP. (Left) Non-amyloidogenic pathway: proteolytic cleavage by α- and γ-secretases precludes amyloid 
β (Aβ) generation. This pathway is initiated by α-secretase and produces the soluble amino-terminal ectodomain of amyloid precursor protein 
(sAPPα) and the α-carboxyl-terminal fragment C83. C83 can be further cleaved by γ-secretase, producing the short fragment P3, also known 
as amyloid β (peptide Aβ17–40/42) and APP intracellular domain (AICD). (Right) Amyloidogenic pathway: sequential proteolytic cleavage 
through β- and γ-secretases is responsible for the generation of Aβ. β-secretase produces the secreted sAPPβ and the β-carboxyl-terminal 
fragment C99. C99 can be cleaved by γ-secretase, giving rise to Aβ and AICD. (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article). 
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played increased levels of BACE2 protein in the frontal lobe, 
suppressing the overexpression of APP, the gene for which is 
also located on chromosome 21, and by that prevent the pro-
gressive impairment in DS. However, the role of BACE2 in 
amyloidogenesis is not completely known [32-34]. 

2.1. BACE1 Structure and Localization 
 BACE1 is a ~75 kDa integral membrane protein showing 
approximately 30% sequence homology with other pepsin 
family members. BACE1 has a low pH optimum. Therefore, 
the enzyme is predominantly active in acidic intracellular 
compartments (e.g. endosomes, trans-Golgi) with its active 
site oriented to the lumen of vesicles. BACE1 is present in 
many tissues but mainly in the brain and pancreas [35, 36]. 
In the brain, the highest expression is found in substantia 
nigra, locus coeruleus and medulla oblongata. Immunoposi-
tive structures are neurons and, to a much lesser extent, rest-
ing glia [37, 38]. 

 BACE1 expression is up-regulated by cellular stress, e.g. 
energy deprivation, hypoxia and ischemia, and oxidative 
stress [39, 40]. A region of DNA that initiates BACE1 tran-
scription lacks typical CAAT and TATA boxes and contains 
GC-rich sequences and four GATA sites. The promoter con-
tains a several transcription factor binding sites cAMP re-
sponse element-binding protein (CREB) [41], hepatocyte 
nuclear factor-3 (HNF-3) [42], nuclear factor- κB (NF-κB) 
[43], specificity protein 1 (Sp1) [44], Yin Yang 1 (YY1) 
[45], and signal transducer and activator of transcription 
(STAT) [46]. While CREB is considered a negative regula-
tor, HN-3, NF-κB, Sp1, YY1, and STAT are positive regula-
tors. It is noteworthy that the overexpression of Sp1 protein 
not only supports BACE1 expression but also increases Aβ 
levels [47]. Single nucleotide polymorphisms do not seem to 
affect BACE1 transcription. Zhou and colleagues examined 
potential polymorphism in the promoter region from 472 AD 
cases and control individuals and did not find any genetic 
association with AD [48]. On the other hand, epigenetic fac-
tors broaden the complexity of BACE1 regulation. De-
creased methylation of CG sites in the BACE1 promoter or 
increased acetylation of histone H3 in the same region ele-
vates BACE1 expression [49, 50]. On the contrary, several 

miRNAs, including, for instance, miR-16-5p, miR-19b-3p 
[51] and miRNA-31 [52] (for more details see reviews [53, 
54]), have been identified as negative regulators of BACE1 
expression, whereas BACE1-antisense lncRNA stabilizes 
BACE1 RNA and promotes APP cleavage. 

 Full-length BACE1 is a 501 amino acid zymogen. The 
enzyme consists of an N-terminal signal peptide (residues 1-21), 
followed by a pro-domain (residues 22-45), and a protease 
domain (residues 46-460) with two active motifs characteris-
tic for aspartyl proteases: DTGS (residues 93-96) and DSGT 
(residues 289-292). Both aspartic residues are important for 
enzymatic activity. If they are mutated, the enzyme becomes 
inactive [55, 56]. BACE1 also contains a single transmem-
brane domain near its C-terminus (residues 461-477) and a 
short cytosolic domain (residues 478-501; Fig. 2). The 
transmembrane domain is required for BACE1 activity 
within the cell and it is necessary for the generation of intra-
cellular C99 in the Golgi compartment (GC). Regulation of 
subcellular localization of BACE1 may be another option to 
control C99 production [57, 58]. 

 In addition to the full-length isoform, the enzyme has 
three alternatively spliced isoforms, which have been isolated 
from the human brain: BACE1457, BACE1432, BACE1476. 
These isoforms are deficient in amino acid and glycosyl 
residues. However, all three variants retain both catalytic 
aspartyl motifs and demonstrate secretase activity [59-61]. 

 BACE1 is synthesized directly into the ER, as with all 
other aspartyl proteases. Subsequently, several post-
translational modifications take place in the ER and the GC 
[62]. BACE1 is exposed to simple glycosylation on four as-
paragine residues (Asn153, Asn172, Asn223, and Asn354) and 
short-term acetylation on seven lysine residues (Lys126, 
Lys275, Lys279, Lys285, Lys299, Lys300, and Lys307) within the 
lumen of ER. Subsequent deacetylation of BACE1 occurs in 
the lumen of GC [38, 63, 64]. Further addition of complex 
carbohydrates and removal of the BACE1 prodomain by 
furin convertases occur in the GC [65, 66]. The fully matu-
rated BACE1 is phosphorylated on Ser498 by casein kinase 1. 
Phosphorylation/dephosphorylation affects the subcellular 
localization of the enzyme. Non-phosphorylatable BACE1 is 
retained within early endosomes. Phosphorylated BACE1 is 

 
Fig. (2). Structural organization of BACE1. SP - signal peptide, PD - prodomain, CaD - catalytic domain, TD - transmembrane domain, 
CD - cytoplasmatic domain, DTGS and DSGT - active sites. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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reinternalized from the cell surface to early endosomes and 
could be recycled back to the cell surface upon dephosphory-
lation [67, 68]. BACE1 also undergoes S-palmitoylation on 
four cysteine residues located at the junction of the trans-
membrane (Cys474) and cytosolic domains (Cys478, Cys482 
and Cys485). S-palmitoylation of membrane proteins plays an 
important functional role in protein-protein interactions, 
folding, trafficking, and association with a lipid membrane 
[69, 70]. Recent studies identified lipid rafts as important 
sites for the generation and accumulation of Aβ. Lipids rafts 
are membrane microdomains enriched with cholesterol and 
sphingolipids. BACE1 and γ-secretase complexes are par-
tially and mainly localized in lipid rafts, respectively. De-
creased levels of cholesterol and sphingolipids, both of 
which are necessary constituents of lipid rafts, correlate with 
reduced β-cleavage [71-73]. 

 Intracellular localization and trafficking of BACE1 can 
be modified by several factors. This includes Golgi-

localized, γ-ear containing, ADP-ribosylation factor binding 
proteins (GGAs), reticulons/Nogo proteins (RTNs) and sort-
ing nexins (SNXs). The GGA family of multi-domain coat 
proteins was first described in 2000 [74]. The family con-
tains three members: GGA1, GGA2, and GGA3. Decreased 
levels of GGA3 bring about an increase in BACE protein 
levels with the sorting of BACE to lysosomes where it is 
degraded. This mechanism is ubiquitin-dependent. GGA1 
proteins have a particular cargo-sorting function in endoso-
mal/Golgi compartments. GGA1 interact with BACE1 and 
are responsible for transporting of the enzyme between the 
late Golgi and early endosomes. The increase in GGA1 lev-
els correlates with increased intracellular APPβ level, 
whereas levels of extracellular APPs and Aβ decrease. On 
the other hand, depletion of cellular GGA3 proteins in-
creases levels of BACE1 and its activity during ischemia and 
in AD brain (Schema of BACE1 trafficking and interrela-
tionship with GGA is described in Fig. 3) [75-78]. 

 
Fig. (3). Trafficking of BACE1. (1) In the endoplasmic reticulum, BACE1 is initially synthesized as a zymogen and subjected to N-
glycosylation, palmitoylation, transient acetylation, and disulfide bridge formation. (2) Full maturation takes place in the Golgi compartment, 
where complex glycosylation and removal of the prodomain by furin prohormone protein convertases lead to the 75 kDa form. (3) Newly 
synthesized BACE1 is transported from the trans-Golgi network (TGN) to the cytoplasmic membrane (CM). (4) BACE1 can be reinternal-
ized from CM to endosomes. (5) BACE1 binds with GGA1 via an acid-cluster-dileucine (ACDL) motif. The binding regulates the transport 
of enzymes from endosomes to TGN. (6) Amyloid precursor protein (APP) is cleaved by BACE1 in the endosomes, producing amyloid β 
(Aβ). (7) Phosphorylation at ser498 regulates BACE1 trafficking. Phosphorylated BACE1 is intercepted from the cell surface to early en-
dosomes. The non-phosphorylated BACE1 recycles back to CM. (8) Lastly, mono-ubiquitination at lysine 501 and binding with GGA3 pro-
mote lysosomal degradation. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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 Regarding the RTNs family, RTN3 and RTN4-B/C were 
identified as interacting with BACE1. They negatively 
modulate BACE1 activity and reduce its ability to produce 
Aβ in the brain [79]. Murayama et al. demonstrated that 
overexpression of these RTNs resulted in a 30-50% reduc-
tion of Aβ140 and Aβ142 secretion from HEK293 cells ex-
pressing APP with the Swedish mutation [80]. Finally, SNXs 
belong to a large family of proteins containing a conserved 
PX domain. Many members of this family have been shown 
to regulate protein sorting in early endosomes. For instance, 
the downregulation of SNX12 increases endocytosis of 
BACE1 and decreases the level of this enzyme on the cell 
surface. SNX6 was identified as another negative regulator 
of BACE1. Okada and his colleagues confirmed that SNX6 
negatively regulates the retrograde trafficking of BACE1 
from the cell surface through the endosomal structure to the 
perinuclear space, thereby regulating Aβ biogenesis. Conse-
quently, inhibition of BACE1 by regulating SNXs might be a 
novel approach in the treatment of AD [81, 82]. 

2.2. BACE1 Substrates 
 Many potential substrates of BACE1 have been identified 
during the last decade with advances in proteomics. Hem-
ming and his colleagues performed quantitative proteomic 
analysis of two human epithelial cell lines stably expressing 
BACE1 and identified 68 putative BACE1 substrates. The 
majority of them were of type I transmembrane topology 
(with N-terminus extracellular orientation), one was of type 
II (with C-terminus extracellular orientation), and three were 
glycosylphosphatidylinositol (GPI)-linked proteins. BACE1 
substrates have been associated with diverse functions, in-
cluding synaptic processes, cell signaling, and immune re-
sponses. Confirmation of the physiological roles of BACE1 
substrates in vitro as well as in vivo may help to understand 
the complexity of BACE1 functions and may reveal how 
much its inhibition affects other essential biological proc-
esses [83-85]. 

 One of the physiological roles of BACE1 is associated 
with the proteolytic processing of Neuregulin-1 (Nrg1). Nrg1 
is a cell adhesion molecule regulating axon myelination in 
the peripheral nervous system via ErbB receptors. Mutant 
mice lacking BACE1 display severe hypomyelination of 
peripheral nerves similar to that seen in mice lacking 
Nrg1/ErbB signaling in Schwann cells. Nrg1 is also an im-
portant candidate gene with a very strong association with 
schizophrenia. In other tissues, its signaling has been linked 
to cardiogenesis and the development of the mammary gland 
[86-90]. 

 Neural cell adhesion protein close homolog of L1 
(CHL1) is another BACE1 substrate [91]. The cleavage of 
CHL1 by BACE1 regulates the balance between growth 
cone extension and collapse via the axon guidance molecule 
semaphorin 3A, regulating correct axonal targeting [92]. 
This process is critical, particularly during embryogenesis. In 
the adult brain, CHL1 deficiency may disrupt the organiza-
tion of axonal pathways in the hippocampus, an important 
structure for learning and memory [93]. 

 Besides APP, BACE1 processes its paralogs amyloid 
precursor-like protein 1 (APLP1) and amyloid precursor-like 

protein 2 (APLP2). APLP1 and APLP2 are type I transmem-
brane proteins that undergo cleavage by secretases, including 
BACE1. Both are metalloproteins with a possible role in 
synaptogenesis and the subsequent maintaining of synaptic 
structure. Knockout mice lacking both APLP1 and APLP2 
show postnatal lethality and growth deficiency, metabolic 
stress such as hypoglycemia, and central respiratory prob-
lems. On the other hand, their specific role within the CNS 
and PNS is still poorly understood [94-96]. 

 Another class of BACE1 substrates is represented by β2 
subunit of voltage-gated sodium channels (VGSCs). The β2 
subunit has an important role in the activation and propaga-
tion of electrical membrane potentials. It also modulates cell 
adhesion and neurite outgrowth in vitro [31]. The β2 
subunits contribute to myelination and their dysfunction has 
been associated with neurodegenerative disorders through a 
variety of mechanisms. Mutations in sodium-channel 
subunits are associated with epilepsy. Kim and colleagues 
found that the ablation of BACE1 led to decreased sodium 
channel levels suggesting that complete blockage of BACE1 
is likely to cause side effects through altered sodium current 
densities [97]. On the other hand, BACE1 inhibitors may be 
effective in the treatment of epileptic symptoms derived 
from abnormal neuronal activity in AD patients, but it will 
be important to find the therapeutic window for inhibiting 
BACE1 activity and simultaneously maintaining physiologi-
cal VGSC functions [98]. 

 BACE1 is also involved in the cleavage and secretion of 
membrane-bound α-2,6-sialyltransferase I (ST6Gal-I). 
ST6Gal-I is a glycosyltransferase type II membrane protein, 
which is highly expressed in the liver. Some of the ST6Gal-I 
soluble forms measured in serum could be considered as a 
diagnostic marker since their increased levels have been re-
lated to inflammation, malignant transformation or liver in-
jury. Kitazume and his colleagues found that the serum level 
of ST6Gal-I was correlated with the activity of hepatic in-
flammation in hepatitis C patients [99-101]. Deng and his 
colleagues investigated the potential role of BACE1 in endo-
thelial cells. The results showed that BACE1 protein levels 
were dramatically upregulated after TNF-α treatment, 
thereby resulting in ST6Gal-I cleavage and a dramatic de-
crease in α-2,6-sialylation in vascular endothelial cells. It 
suggests that inhibition of BACE1 expression may represent 
a new approach for treating atherosclerosis [102, 103]. 

 Low-density lipoprotein receptor-related protein (LRP), a 
multifunctional endocytic and signaling receptor, is a novel 
BACE1 substrate. LRP is a type I integral membrane protein 
cycling between the cell membrane and endosomes. LPR 
interacts with BACE1 on the cell surface in association with 
lipid rafts. BACE1-LPR interaction releases both secreted 
LRP and the LRP intracellular domain from the membrane. 
BACE1 inhibition may, therefore, preserve LRP on the sur-
face of neurons, increasing Aβ clearance. However, other 
experiments have demonstrated that LRP binds to longer 
isoforms of APP, containing a Kunitz-type proteinase inhibi-
tor domain. These isoforms are the most abundant forms of 
APP in the brain and LRP may modulate their processing, 
leading to increased Aβ production. It is also noteworthy that 
LPR is also the major apolipoprotein (apoE4) receptor in 
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neurons. Both apoE4 and a silent polymorphism in exon3 of 
the LRP gene (C776T) represent a significant genetic risk 
factor for late-onset AD. Thus, further research is needed to 
illuminate the LRP role in AD pathogenesis [104-108]. 

 In summary, despite the substantial progress in this field, 
the normal function of BACE1 and its substrates has not 
been fully identified. A knowledge of their subcellular local-
ization and a precise definition of their roles are essential for 
the development of BACE1 inhibitors. Full inhibition of 
BACE1 will contribute to the accumulation of misfolded 
BACE1 substrates in the cellular endomembrane system, 
including ER. Accumulation of misfolded proteins in ER 
underlies the induction of stress, i.e. the status that is already 
associated with AD pathology [109]. ER stress over-activates 
three pathways, namely pancreatic ER kinase (PERK), acti-
vating transcription factor-6 (ATF-6), and inositol-requiring 
enzyme-1 (IRE1) pathways, which when continuously acti-
vated, contribute to neuronal death by apoptosis and conse-
quently memory deficits [110]. Thus, it seems necessary first 
to determine the relation between the quality and the quan-
tity of BACE1 inhibition and its impact on physiological 
functions. 

2.3. BACE1 vs. BACE2 Selectivity 
 BACE1 and BACE2 show similar expression in tissues, 
with one exception. BACE2 has been reported to be expressed 
in the pancreas, whereas BACE1 is not (Table 1). BACE1 
and BACE2 share 50% homology. Additionally, similarities 
can be found to proteases such as cathepsin D, cathepsin E, 
pepsin, and renin. BACE1 was predominantly confirmed as a 
neuronal protein. The co-expression pattern of the BACEs 
raises the question of whether BACE2 is a functional substi-
tute for BACE1. Thus, the challenge is to develop a highly 
selective inhibitor to minimize side effects [111, 112]. 

 Several studies, including those by Fluhrer et al. and Yan 
et al., demonstrated that BACE2 does not possess β-secretase 

activity [113, 114]. On the contrary, BACE2 overexpression 
suppresses Aβ production in AD transgenic mice and cells 
[115, 116]. Nevertheless, Wang and colleagues reported that 
under certain circumstances, BACE2 can become a condi-
tional β-secretase. This is enabled by clusterin (apolipopro-
tein J) through binding to the juxtamembrane helix of wild-
type APP. Both BACE2 and clusterin display increased ex-
pression in neurons of aged wild-type mice [117]. Interest-
ingly, β-secretase activity, but not BACE1, increases during 
aging in human, monkey and mouse brains. Thus, BACE2 
could act as β-secretase during this process [118]. BACE2 
expression is also up-regulated under inflammatory condi-
tions [119]. Nevertheless, the role of BACE2 in AD pathol-
ogy needs to be further elucidated. BACE2 is also highly 
expressed in pancreatic endocrine β-cells. It up-regulates the 
expression of transmembrane protein 27 (TMEM27). 
TMEM27 augments β-cell mass and insulin production. Ac-
cording to Esterházy’s study, non-selective inhibitors can 
have a beneficial effect in the treatment of type 2 diabetes 
[120, 121]. 

 On the other hand, BACE2 is expressed in pigment cell-
specific melanocytes playing a pivotal role in the melano-
genesis of the hair follicle. This could be the underlying 
mechanism of irreversible hair depigmentation observed 
during clinical trials with several non-selective BACE1 in-
hibitors [122]. Altogether, it seems necessary to assess the 
relation between the extent of inhibition and beneficial as 
well as adverse effects to evaluate the possible contribution 
of non-selective inhibitors to AD therapy. 

2.4. Off-targeting 

 Off-targets are most likely responsible for other reported 
adverse effects. For instance, the novel BACE1 inhibitor 
series exhibited a potential cardiovascular risk associated 
with QT prolongation. The interesting structural motifs have 
been based on amidine or guanidine core structures. This has 
been related to an interaction with the human Ether-A-Go-
Go ion channel (hERG), which is responsible for the rapid 
component of delayed rectifier potassium current in the heart 
[123, 124]. Inhibition of the R-subunit of IKr channels is a 
critical element in the development of new drugs and in vitro 
methods have been developed to assess hERG activity of 
BACE1 inhibitors. AMG-8718 is an example of a substance 
with high activity against BACE1 and a reduced affinity to 
hERG [125]. However, the lack of hERG channel affinity 
does not always mean the absence of delayed cardiac repo-
larization under clinical settings [126]. It is noteworthy that 
Aβ1-40 and Aβ1-42 are expressed in the heart of AD patients, 
and compounds showing anti-BACE-1 activity and no hERG 
affinity may prevent heart failure [127, 128]. In this case, the 
application of BACE1 inhibitors may not only be a benefit 
for AD treatment but may also positively influence cardio-
vascular status. 

 Another important off-target belongs to the cathepsin 
family. Zuhl et al. associated the ocular toxicity of BACE1 
inhibitors with cathepsin D off-targeting and found that 
quantification of cathepsin D inhibition is predictive of the 
toxic effect in vivo [129]. It is noteworthy that cathepsin D 
deficient mice develop seizures and retinal atrophy associ-
ated with blindness [130], while in humans, it is related to 

Table 1. Gene expression of human BACE1 and BACE2. 

Anatomical Locus BACE1 BACE2 

Cardiovascular system + + 

Respiratory system + + 

Haematological system + + 

Lymphoreticular system + + 

Alimentary system + + 

Urogenital system + + 

Endocrine system + + 

Musculoskeletal system + + 

Dermal system + + 

Nervous system + + 

Pancreas N + 

N - no expression is reported in contrast to BACE2 [112]. 
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early blindness and progressive psychomotor impairment 
[131]. Cathepsin E deficiency, on the other hand, is related 
to atopic dermatitis, an inflammatory skin disease [132]. 
Skin rashes have been consistently reported as BACE1 in-
hibitors´ side effects during clinical trials [133]. 

 Finally, gastrointestinal undesired effects, including 
weight loss, were reported in clinical studies of Verubecestat 
[134]. Although no mechanistic explanation has yet been 
demonstrated, we may hypothesize that it may be linked to 
the similarity between BACE1 and the digestive enzyme 
pepsin. 

3. BACE INHIBITORS 

 The current AD treatment strategy is based on four drugs. 
Three of them, including donepezil (Aricept), rivastigmine 
(Exolon) and galantamine (Reminyl), are acetylcho-
linesterase inhibitors decreasing the breakdown of the neuro-
transmitter acetylcholine. Only 20-30% of patients respond 
positively to treatment with cholinesterase inhibitors. In the 
case of intolerance of or a contraindication for acetylcho-
linesterase inhibitors, the fourth drug, NMDA antagonist 
memantine (Ebixa) is prescribed [135-138]. 

 The first studies targeting amyloid processing were fo-
cused on γ-secretase. The use of γ-secretase inhibitors soon 
became problematic as the complex appears to have multiple 
substrates, including Notch, the protein which regulates cell 
proliferation, differentiation, and growth. Therefore, it is not 
surprising that hematological disorders, gastrointestinal 
symptoms, skin reactions, and hair color changes were ob-
served in patients during clinical trials [139, 140]. 

 Consequently, the focus of AD therapy research turned to 
BACE1 [141-143]. Four distinct generations of BACE1 in-
hibitors are recognized (Table 2) based on molecular size 
and selectivity to BACE1, BACE2 and other proteases. 

 The first generation of BACE1 inhibitors is represented 
by large hydrophobic substrate binding-site polypeptides. 
Although peptidomimetic inhibitors were highly potent in 
vitro, these enzyme inhibitors had low oral bioavailability, a 
short half-life, metabolic instability, and poor ability to pene-
trate the blood-brain barrier (BBB) [144-146]. Pepti-
domimetics were also prone to P-glycoprotein efflux [147]. 
As an example, OM99-2 is an eight-residue inhibitor with a 
molecular weight of 893 g/mol. The compound showed very 
potent BACE1 inhibitory activity with a Ki of 1.7 nM but 
failed in clinical trials. Hong et al. elucidated the crystal 
structure of the BACE1/OM99-2 complex [148]. Under-
standing of the interactions between the inhibitor and the 

active sites of BACE1 represented a major advance in the 
development of subsequent generations of highly selective 
inhibitors [149, 150]. For this reason, it is still being used as 
a reference compound in biological assays, in docking and 
molecular dynamics simulations, and the development of 
electrochemical biosensor assays for monitoring of BACE1 
activity [151-154]. 

 Non-selective inhibitors based on small molecules repre-
sent the second generation. LY2811376 was the first non-
peptidic BACE1 inhibitor tested in humans. Early experi-
ments showed 63-fold selectivity over cathepsin D. How-
ever, later study by Ellis et al. considered pH-depend bind-
ing behavior and demonstrated that LY2811376 is only 6 
times more selective [155]. Eli Lilly began phase I clinical 
trial in 61 healthy volunteers in 2008 to assess the single-
dose effects of the drug on the body, including cerebrospinal 
fluid (CSF) (for study details see NCT00838084). The pub-
lished results proved safety, tolerability, and good BBB 
penetration. The doses of 30 and 90 mg displayed a signifi-
cant reduction of Aβ1-40/42 in the CSF. In parallel to the 
phase I trial in healthy participants, a 3-month toxicology 
study was conducted in rats to prepare for longer clinical 
exposures. In this model, the drug caused cytoplasmic accu-
mulations of autofluorescent material in the retinal epithe-
lium, neurons and glial cells at doses ≥30 mg/kg [156], dis-
continuing clinical tests. Subsequently, several structurally 
distinct BACE1 inhibitors have been withdrawn from devel-
opment due to ocular toxicity. This includes AMG-8718 
introduced as a perspective drug in 2014 [125]. In 2015, 
Filden et al. reported an increase in autofluorescent granules 
in the retinal pigment epithelium, which led to a significant 
loss of photoreceptor cells and retinal thinning in rats [157]. 

 The second generation of BACE1 inhibitors was gener-
ally unable to achieve satisfactory results since BACE2 and 
cathepsin D active sites show high homology with BACE1 
and induced severe side effects [158]. The shift of selectivity 
from cathepsin D towards BACE enzymes was solved with 
the development of potent third-generation small-molecule 
BACE1 inhibitors. These compounds exhibit satisfactory 
pharmacokinetics and robust cerebral Aβ reduction in pre-
clinical animal models [113]. 

 However, in 2018 (Table 3), clinical trials with two third-
generation substances, including verubestat (MK-8931) and 
lanabecestat (AZD3293/LY3314814), were terminated. 

 Verubecestat was developed by Merck and the drug 
entered the final clinical trial in 2013. Altogether, 1958 vol-
unteers from 90 different countries entered the study. The 

Table 2. Generations of BACE1 inhibitors. 

Generation Group Representatives 

First oligopeptides OM99-2 

Second non-specific small molecule inhibitors LY2811376 

Third non-selective BACE small molecule inhibitors MK-8931 AZD3293 

Fourth BACE1 preferential small molecule inhibitors CNP250 E2609 
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drug was administered at doses of 12 and 40 mg for 260 
weeks. (for study details see NCT01953601) [159]. Al-
though Egan et al. demonstrated that verubestat reduces 
amyloid levels in the brain and cerebrospinal fluid, cognition 
and daily function were worse among patients who received 
verubecestat than among those who received a placebo 
[160]. This study was therefore discontinued on the grounds 
of futility. Additionally, there was an average weight loss of 
1.6 kg, changes in hair color were frequent, and rashes were 
almost twice as common in the verubecestat group than with 
placebo [161]. At present, Verubestat is utilized only in bio-
chemical assays as a reference compound. 

 Lanabecestat was developed by a British-Swedish com-
pany AstraZeneca. AstraZeneca joined Eli Lilly and started a 
phase II/III clinical trial with 2218 participants with early 
AD in 2014, a phase III trial with 1722 participants with 
mild AD dementia in 2016 and a phase III trial with 421 par-
ticipants with Early Alzheimer's Disease Dementia. These 
multi-center, randomized, double-blind, placebo-controlled 
studies were evaluating the disease-modifying potential of 
Lanabecestat at daily doses 20 and 50 mg for 24-156 weeks. 
The treatment was well tolerated and did not show any  
cognitive or functional decline (for study details see 
NCT02245737, NCT02783573, NCT02972658). Neverthe-
less, both studies were terminated early after futility analysis. 
Besides, they reported weight loss, hair color changes and 
depigmentation of the skin [162]. 

 Atabecestat (JNJ-54861911) was another substance dis-
continued in 2018. The compound cannot be precisely classi-

fied into the third or the fourth generation because only 
BACE1 affinity was published (Tab. 4) and classification 
cannot be assigned based on reported adverse effects. The 
compound was developed by Janssen Pharmaceutica in col-
laboration with Shionogi. Clinical trial phase IIb/III aimed at 
asymptomatic subjects at risk for developing AD. Overall, 
557 participants were administered with placebo, 5 mg or 25 
mg of Atabecestat once daily up to 54 months (for study 
details see NCT02569398). The trial was terminated as a 
result of liver enzyme elevations pointing to hepatotoxicity. 
It was concluded that the benefit/risk ratio was insufficiently 
favorable to continue its development for patients who have 
late-onset preclinical stage Alzheimer’s disease [163-165]. 

 Due to the nature of the above-mentioned adverse effects 
of the third-generation inhibitors and the possible involve-
ment of BACE2 in their mechanism-of-action, specific small 
molecules of inhibitors preferentially inhibiting BACE1 
were developed (Table 4). Thus, compounds such as umibe-
cestat (CNP250) and elenbecestat (E2609), can be consid-
ered the fourth generation. 

 According to Neuman et al., umibecestat is ~3-­‐, 
~20,000-­‐ and ~6,000-­‐fold more selective for BACE1 than 
for BACE2, CatD, and CatE, respectively [169]. Another 
important feature is that the drug can decrease Aβ concentra-
tion irrespective of APOE4 status, which was demonstrated 
in the brain of APOE4-transgenic mice and the CSF of hu-
mans during phase IIa clinical trial [170, 171]. In 2015, No-
vartis with Banner Alzheimer's Institute, ran Phase II/III 
study. This study enrolled 480 participants to match placebo, 

Table 3. Latest II/III phase clinical trials with BACE1 inhibitors. 

Compound Company Phase 
Trial 

Population Start 
Date 

Stop 
Date 

Expected  
Completion Date 

Verubecestat (MK-8931) Merck III Prodromal AD 10/2013 3/2018 5/2019 

Lanabecestat (LY3314814) Eli Lilly II/III Early AD 5/2016 6/2018 6/2019 

Atabecestat  
(JNJ-54861911) 

Janssen IIb/III Prodromal and pathophysiology 
(asymptomatic) AD 

10/2015 1/2019 5/2023 

Umibecestat (CNP520) Novartis, Amgen, and Banner II/III Unimpaired two APOE4 genes 4/2015 6/2019 8/2024 

Elenbecestat (E2609) Eisai and Biogen III Early-stage AD 11/2016 9/2019 6/2020 

 

Table 4. IC50 or Ki of the third and fourth generation of BACE inhibitors. 

IC50 or Ki ( nM) 
Compound 

BACE1 BACE2 CatD 

Verubecestat (MK-8931)a 2.2 0.38 >100,000 

Lanabecestat (LY3314814)b 0.6 0.9 16,100 

Atabecestat (JNJ-54861911)c,d 1.0-2.6 - - 

Umibecestat (CNP520)d 11.0 30.0 205,000 

Elenbecestate (E2609) - - - 
a[166], b[167], c[168], d[169], eIC50 values of BACE1, BACE2 and CatD are not available. 
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CAD106 immunotherapy and 50 mg umibecestat adminis-
tered for the duration of treatment (for study details see 
NCT02565511). Unfortunately, the trial was terminated as 
the participants taking umibecestat deteriorated on the re-
peatable battery for the assessment of neuropsychological status 
(RBANS) cognitive test, showed more pronounced brain 
atrophy, and lost more weight than did people on placebo 
[172]. 

 Elenbecestat is another member of the fourth generation 
of BACE1 inhibitors [173]. Eisai company reported that 
elenbecestat binds BACE1 and BACE2 with an affinity of 
19 and 67 nM, respectively, amounting to a 3.5-fold prefer-
ence for BACE1 over BACE2 [174]. The results of an 18-
month long phase II clinical study revealed that the drug was 
generally safe, well-tolerated and may have moderating ef-
fects for patients who had mild to moderate cognitive im-
pairment (for study details see NCT02322021) [173]. In 
2016, Eisai initiated two large multinational phase III clini-
cal trials including 2199 patients with early AD. Both studies 
tested the effects of Elenbecestat at a daily dose of 50 mg for 
24 months (for study details see NCT02956486). But again, 
the trial was prematurely terminated. Detailed data of the 
study have not yet been published [175, 176]. It seems that 
hopes placed on the higher BACE1 selectivity were over-
optimistic and the studies were stopped due to an unfavor-
able risk/benefit ratio. 

 Above mentioned representatives of the third and the 
fourth generation were the only BACE1 inhibitors that en-
tered phase III of clinical trials. Recent years additionally closed 
another two clinical studies. Pfizer introduced PF-06751979, 
a substance displaying broad selectivity to BACE1 over 
BACE2 and related aspartyl proteases. This indicates a clas-
sification into the fourth generation, which is also supported 
by data from a 9-month toxicology study, revealing no hair 
coat color changes in dogs [177]. Phase I was conducted in 
2016-2017 (for study details see NCT02509117, NCT02793232). 
However, early 2017 Pfizer announced stopping the devel-
opment of BACE1 assets. LY3202626 was developed by Eli 
Lilly. It is ~1.4-­‐ and ~23,000-­‐fold more selective for BACE1 
than for BACE2 and CatD, respectively [178]. Due to the 
relatively low difference in inhibition between both BACE 
enzymes, the substance could be considered a member of the 
third generation. The results of the phase I indicated that the 
drug was safe, effectively penetrated trough BBB and re-
duced Aβ40 in CSF of healthy volunteers by 50%, 90%, 
100% at doses 1, 6 and 26 mg, respectively (for study details 

see NCT03023826, NCT02555449) [179]. The phase II 
(2016-2018) aimed at participants with mild AD dementia 
and tested daily doses of 3 and 12 mg for 52 weeks (for 
study details see NCT02791191). The study was halted early 
after an interim analysis showed a statistically low probabil-
ity of success. Despite both companies backed away from 
BACE1, the research in this field is still ongoing [180, 181]. 
Novel compounds have been synthesized and tested towards 
BACE1 activity, including selective or multi-target drugs, 
natural compounds, and their derivatives [182-186]. 

CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES 
 Almost thirty years after the cloning and identification of 
β-secretase, we have been unable to find a suitable drug for 
the treatment of AD. The failure of recent clinical trials 
raises the question of whether or not to continue therapeutic 
targeting of BACE1. No benefits and reported undesirable 
side effects could indicate the first. However, BACE1 inhibi-
tors reduce Aβ brain load and associated inflammation [185]. 
According to Alzforum, people on the drug also scored better 
than placebo on language tests [133]. Thus, could there be a 
compromise stopping at least the progress of the disease? 

 So far, Aβ concentration in CSF has been used as a bio-
chemical marker of substance efficacy, a parameter that re-
flects AD pathology in the brain [187]. As first mentioned by 
Koelsch [21] and as shown in the following table (Table 5), 
rather higher dose administration and target >50% reduction 
of Aβ was preferred in clinical studies. Such inhibition could 
be associated with the risk of side effects due to the large 
number of physiological substrates processed by BACE1. A 
lower level of Aβ inhibition was demonstrated in the case of 
elenbecestat administered at a dose of 25 mg, but only a 50 
mg dose entered phase III clinical trial [188]. Additionally, 
atabecestat was tested at 1 and 3 mg. Both doses displayed 
trends slightly exceeding placebo but no substantial Aβ1–40 
reduction was observed [163]. Therefore, the most relevant 
question in this context is whether a possible therapeutic 
window exists. If so, it needs to be specified and the dose of 
BACE1 inhibitors must be adjusted accordingly. 

 Determination of the therapeutic window will be the 
challenge. The recent trials of BACE1 inhibitors were pro-
posed based on in vivo experiments aimed at reducing the Aβ 
level in CNS by 50-90%. Although the results indicated a 
benefit in the mouse brain, human trials did not confirm this 
finding. Hence, mice do not appear to be an appropriate 

Table 5. Reduction of Aβ in CSF depending on the daily dose. 

Compound Dose (mg) Reduction Aβ (%) Dose (mg) Reduction Aβ (%) Dose (mg) Reduction Aβ (%) 

Verubecestat (MK-8931)a 12 50-75 40 80-90 - - 

Lanabecestat (LY3314814)b 15 63 50 79 - - 

Atabecestat (JNJ-54861911)c 5 50 30 80-85 50 90 

Umibecestat (CNP520)d 15 95 50 95 - - 

Elenbecestat (E2609)e 25 43.6 50 59.4 100 71,3 
a[189], b[190], c[163], d[191], e[188]. 



70    Current Neuropharmacology, 2021, Vol. 19, No. 1 Hrabinova et al. 

model. It may be necessary to use higher mammalian models 
with a predisposition to AD. Among presently established 
models, non-human primates (NHP) are the most closely 
related to humans. Their CNS anatomy, neurobiology, im-
mune system, and AD-related pathologies share higher simi-
larities with those of humans than other species [192, 193]. 
But despite intensive research, a model resembling sporadic 
later onset form of AD has not yet been developed. There are 
also ethical issues and high costs of maintaining, restricting 
wider use of NHPs [194, 195]. On the other hand, geneti-
cally modified primate that develops AD within a reasonable 
time frame would be a sensible model before embarking on 
clinical trials [193]. Such a model, together with BACE1 
activity, reduced to a certain percentage could resolve the 
issue regarding the therapeutical window [196, 197]. Fur-
thermore, conditional inhibition of BACE1 expression may 
be required to avoid compensatory mechanisms up-
regulating this protein [198, 199]. Higher mammals can also 
help in the investigation of the effects of the long-term 
BACE1 inhibition and determine whether the predicted posi-
tive effects of Aβ reduction can outweigh any deleterious 
effects on synapses and cognitive function in the long-term 
perspective [161]. 

 Another therapeutic strategy could be focused on modu-
lation of BACE1 trafficking into the extracellular space to 
spare intracellular functions. This process is regulated via 
post-translational modifications and several interaction pro-
teins [200-203]. The physiological role and function of 
BACE1 post-translational modifications and interactions are 
still not fully understood and could potentially cause un-
wanted side effects as well as the full inhibition of BACE1 
enzymatic activity. Puzzo et al. also showed that low pico-
molar concentrations of Aβ42 monomers and oligomers in-
crease hippocampal long-term potentiation and stimulate 
synaptic plasticity [204]. Thus, the utilization of inhibitors of 
BACE1 post-translational modifications and/or interactions 
might be again limited by a therapeutic window to avoid 
complete loss of Aβ that could lead to synaptic deficits. On 
the other hand, such inhibitors could represent an entirely 
new generation of BACE1 modulators but their design must 
be based on a deeper knowledge of BACE1 biology. 
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